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Abstract-In this paper the unsteady coupling of conduction and convection for a thin body in a high 
speed stream is considered. The body is modeled as a strip on one side of which the fluid is impulsively 
started in motion whereas on the other side two different thermal boundary conditions are given : constant 
temperature or vanishing heat flux. In the first part of the analysis an approximate solution of the energy 
equation in the solid enables us to obtain relations between the temperature and the heat flux at solid- 
fluid interface which are more accurate than those currently used in the literature. In the second part the 
exact solution of the two problems that arise from the coupling of the thermofluid-dynamic equations and 

the relations between the temperature and its derivatives at the interface are presented. 

1. INTRODUCTION 

PROBLEMS which arise from the coupling of con- 
duction in a solid body and of conduction and con- 
vection in a unsteady stream flowing around it present 
noticeable interest in applications. This is the case, for 
example, in aerospace situations where a fast flow 
interacts with the external surface of a usually thin 
wall, the other surface of which is kept adiabatic or 
in isothermal conditions. 

An adiabatic condition is also realized, of course, 
in cases when a plane of symmetry is present. A model 
for these situations corresponds to the assumption 
that the solid body behaves as a flat plate from the 
fluid-dynamic point of view. 

The thermofluid-dynamic field along an impulsively 
started flat plate with vanishing thickness, studied at 
the beginning of this century [ 11, is described by very 
simple functions. 

When one considers the motion of a flat plate with 
a non-zero thickness, the coupled thermal field in the 
solid and thermofluid-dynamic field in the fluid must 
be determined. This problem can be simplified when 
it is possible to adopt an approximate solution of the 
energy equation in the solid and thereafter to solve 
the thermofluid-dynamic equations in the fluid with a 
suitable boundary condition for the energy equation 
at the solid-fluid interface. This condition was 
obtained (while studying the thermal entrance region 
of a duct) by Sparrow and De Farias [2] and by Sucec 
[3], by means of an energy balance on an element of 
axial extension dx of the solid body by assuming 
a mean value of the temperature throughout its 
thickness. 

In this paper we present a different and more accur- 
ate thermal condition at the solid-fluid interface and 
we solve the problem for the suddenly started flat 
plate, also taking into account the heat produced by 
friction. 

2. TEMPERATURE IN THE SOLID 

The temperature field in a two-dimensional homo- 
geneous solid is governed by the heat-conduction 
equation 

T,. = dA,T (1) 

where 1’ is the dimensional time and d is the thermal 
diffusivity d = I/PC, and 1, p and c are the thermal 
conduction coefficient, the density and the specific 
heat. 

Let us consider a strip of thickness b along a y’ axis 
and characteristic length L along an x’ axis. Then, in 
dimensionless form, equation (1) can be written as 

T, = T,,+(b’/L’)Txx (2) 

where X = xl/L, Y = y//b, and the non-dimensional 
time is T = t’d/b2. 

In particular, if temperature is supposed not to 
depend on the X variable equation (2) reduces to 

T, = T,,. (3) 

As a first step we consider the temperature dis- 
tribution in an infinite strip, when governed by equa- 
tion (3) for two types of boundary conditions. Case 
(a) corresponds to T = T,(r) on the upper side and 
T = T, = const. on the lower side. In case (b) 
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NOMENCLATURE 

plate thickness 
specific heat of the solid 
thermal diffusivity 
reference length in x’ direction 
Mach number 
first coupling parameter 
Prandtl number 
Reynolds number 
dimensionless time for the fluid 
dimensional time 
dimensionless temperature referred to the 
asymptotic one 
particular solution of the unhomogeneous 
problem 
solution of the homogeneous problem 
second coupling parameter 
dimensionless velocity component in x’ 
direction 
Stewartson-Dorodnitzin velocity 
component in x’ direction 
dimensionless velocity component in y’ 
direction 
Stewartson-Dorodnitzin velocity 
component in y’ direction 
fluid dimensionless abscissa 
solid dimensionless abscissa 

X' dimensional abscissa 
Y fluid dimensionless ordinate 
Y solid dimensionless ordinate 
Y’ dimensional ordinate. 

Greek symbols 
Y specific heat coefficients ratio 
II Stewartson-Dorodnitzin ordinate 
e Laplace transform of T+ 
L thermal conductivity 
P absolute viscosity 

; 
kinematic viscosity 
Stewartson-Dorodnitzin abscissa 

P density 
7 dimensionless time for the solid. 

Subscripts 

f 
quantities evaluated at the lower wall 
quantities evaluated in the fluid 

0 quantities evaluated at t = 0 
S quantities evaluated in the solid 
W quantities evaluated at the upper wall 
co quantities evaluated at infinity. 
case a isothermal case 
case b adiabatic case. 

T = T,(7) on the upper side and Ty = 0 on the lower 
side (Fig. 1). 

If equation (3) is written for the upper side of the 
strip 

Tw = Trr., 

its right-hand side can be approximated by 

(4) 

T rr.w = T,, - T,, (5) 

where ‘e’ stands for the lower external side of the strip. 
Furthermore if one assumes 

T,, = Tw - T, (6) 

then one obtains the following approximated relations 

(a) T,, = T,, - T, + T, ; 04 T,, = T,,, (7) 

for cases (a) and (b), respectively. Equations (7) and 
the relations which express the continuity of the tem- 
perature and of the heat flux at the fluid-solid inter- 
face were usually adopted in the literature (see, e.g. 
Sparrow and De Farias [2], Sucec [3], Kim and Ozisik 
[4]) as boundary conditions for the energy equation in 
conjugated heat transfer problems. However, simple 
conditions more accurate than equations (7) can be 
obtained by integration of equation (3) with respect 
to Y between 0 and 1. In particular, since 

(4 
Yb Fluid 

1 n1 .I) =T,W 

///////////////////// 

/////////“““‘)&LU 

0 
x 

T(0.l) =r, 

(b) 
‘I,,,;;;& ,,,,,, ,,,, 

//////r//////////l/// 
0 X 

T,(O.r) =o 

FIG. 1. Boundary conditions in the solid. 
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(8) 

after multiplying equation (3) by Y and integrating 
one has 

a 1 
s &, YTdY=T,,-Tw+Tc. (9) 

For T,, = 0 equation (8) immediately gives 

TdY = TY.w. (10) 

Now we approximate the integral relations (9) and 
(10) (rather than differential relations) by assuming 
a suitable linear expression either for T or for T,, 
respectively. 

Case (a) 

In order to calculate the integral at the left-hand 
side of equation (9) we assume T = T,+ (T,- TJY. 
Then, equation (9) leads to 

T,, = 3(T,-T,+T,). (11) 

Case (b) 

In this case the integral at the left-hand side of 
equation (10) is evaluated letting T, = T,Y and one 
has 

3T,,-T,, = 3T,. (12) 

Equations (11) and (12) are more accurate than 
equation (7) since no approximations were introduced 
in the evaluation of differential expressions but only 
at an integral level. The accuracy of these results will 
be checked by comparison with some exact solutions. 
Simple exact solutions of equation (3) with the bound- 
ary conditions corresponding to cases (a) and (b) can 
be obtained in separable form. In the first situation 
one has T- T, = exp ( -h%) sin Yh, where h is an arbi- 
trary constant. 

By assuming h = n/2 our condition (11) leads to 
an approximate value for 7rL?/4 equal to 3, whereas 
equation (7a) provides a result equal to 1. By assuming 
h = n/4equation (11) leads to 0.645 = 0.616, whereas 
equation (7a) gives 0.215 = 0.616. A second solution 
is T-T, = e H4 Sin h Y, where Sin stands for the 
hyperbolic sine, and h is an arbitrary constant. For 
h = 1 equation (11) gives an approximate value for 
1.175 equal to 1.104, whereas equation (7a) yields 
0.378. 

Similar comparisons can be performed in case (b). 
Exact solutions can be obtained from the previous 
ones by replacing sin (or Sin) by cos (or Cos). For 
T = exp ( - .rx*/16) cos (Y7r/4), equation (12) approxi- 
mates 2.97 by 3 whereas equation (7b) approximates 
0.785 by 1. 

3. EQUATIONS AND BOUNDARY CONDITIONS 
FOR THE THERMOFLUID-DYNAMIC FIELD 

The thermofluid-dynamic field in the flow close to 
the wall is assumed to be governed by the laminar 
boundary layer equations, which in non-dimensional 
form when the outer velocity is constant may be writ- 
ten as 

PI + (PU)x + (PJX = 0 (13) 

Mu, +wr + qJ = (PJ,l 

[p(T,+uT.~+uT,.) = ~(~Ty),+(y-I)M2jm’]. (14) 

We take now as reference lengths L and L/Re’/* 
along the x and y directions, respectively, where 
Re = u,L/v, and v, is the asymptotic kinematic vis- 
cosity of fluid; the reference time is L/u, and tem- 
perature, density, thermal conductivity coefficient and 
the reference velocity are the asymptotic ones. M and 
Pr are the Mach and Prandtl numbers. 

By assuming that p and 1 vary linearly with tem- 
perature the boundary layer equations reduce to the 
incompressible form by the Stewartson-Dorodnitzin 
transformation and equation (13) may be solved inde- 
pendently of equation (14). Let 

(=x; r/= )‘pdy; 
I 

u = u; v= pu+u~x+~,. 
0 

(15) 

Equations (13)-( 15) become 

cJ,+v, =o (16) 

u, i- vu, -I- VQ’ = (I,, (17) 

T,+UT,+VT, = T,,/Pr+(y-I)M*U; (18) 

associated with the boundary conditions 

U((,O,t) = V(&O,t) =o; T(t, v, t-1 = 1 

(19) 

U({,O,l+)= T(&co,l+)= 1; U(&q,t-)=0 

(20) 

where t+ and t- stay for t > 0 and t < 0, respectively. 
At the interface (II = 0) one has that the tem- 

perature of the fluid equals the temperature of the 
solid. Moreover the heat flux is continuous, i.e. 

1 Cd) T(d) = 1 W T(d) I Y .s >’ (21) 

where (d) denotes dimensional quantities. The right- 
hand side of this equation may be written in terms of 
non-dimensional quantities as 1, T, T,, Re’/* L and 
hence equation (21) gives the last condition for the 
energy equation 

T,, = (b Re ‘I* I,/LI,)T,,, (22) 

which, after equations (11) and (12), can he written 
as 
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Case (a) 

Case (b) 

Tw, = MPT,.,-T~+T~) (23) 

(3/p)T,, - T,,.,, = 3t, T,,, 

where t, = Ldlu,b’ and p = b Re’12 1,/L&. 

(24) 

4. THERMOFLUID-DYNAMIC FIELD PAST AN 
INFINITE STRIP 

4.1. Velocity profile 
Since the thermofluid-dynamic field does not 

depend on x, for an infinite strip equations (16) and 
(17) lead to the well known solution 

U = erf (q/21”‘) (25) 

where erf denotes the error function (see Abramovitz 
and Stegun [5]). 

The velocity profiles in the physical plane will then 
be obtained by solving the energy equation (18) 
because the density distribution must be evaluated in 
order to recover the physical coordinate y from n 
through equation (15b). 

4.2. Solution of energy equation 
For an infinite strip equation (18) reduces to 

T,-T,,,/Pr = (y-l)M2Ut C-W 

and the right-hand side is equal to (y - 1) 
M2exp (-ff2/2t)/m. 

To solve equation (26) in cases (a) and (b) we put 
T = 1 + T+ + Tp, where T,, is a particular solution of 
equation (26), for T(cq t) = T(q,O). A similar solu- 
tion for 5 = q/2t’12, can be obtained in the form 

C-2[(y- l)(Pr/n)“‘] 
s 

‘f d{ 
0 

+[(y- l)/KJ erfc (Pr’j2c) erfc (Kl Pr’/2) 
I 

(274 
where 

f = exp -(K{ Pr ‘I’) ‘1 erfc (5 Pr ‘/2), 

and 

K’ = 2/Pr- 1 

C = 2(y-l)(Pr/~)‘/~ 
s 

-fdS 
0 

= [2( y - 1)/n] arctan K/K (27b) 

For Pr > 2 K is imaginary but equations (27a) and 
(27b) are still valid and can be written as 

C= [W+‘~fdWs] 

I 
7r = 2(y- 1) arctan h 6/&r 

where 

and 

6’ = Pr/(Pr-2) = - l/K2 

f2(s) = e-@‘)’ 
s 

’ e12 dt. 
0 

It results TpW = T&O, t) = CM2, T,(q, 0) = 0, T,,JO, t) 
= 0, T,,,JO, t) = 0. For Pr = 1 one has 

T,, = (y- l)M2(1 -erf2 5)/2 (27~) 

and for Pr = 2 

c = 2(y- 1)/n, 

Tb = CM2+2(y-l)M2(e-2E’-l)/n 

= 2(y- 1)M2 e-2E’/rr. 

T+ is obtained from T,? - T$,/Pr = 0 with T+ 
(co, t) = T’(q,O) = 0 and with the further condi- 
tions (23) or (24), which in terms of T+ give 

Case (a) 

Tz =3t,(pT,f,-T,++T,-1-CM2) (28a) 

Case (b) 

(3/p)T,:-TT,+,,-3t,T:, = 0. (28b) 

Let Qs,rl) be the Laplace transform, with respect 
to t, of T+, which is governed by se-tI,,/Pr = 0. The 
solution convergent at infinity is 0 = A exp 
(- Pr”‘s’/2u), where A is determined by the transform 
of equation (28a) or (28b). 

Case (a) 

se(s, 0)+ CM2 = 3t&e,(s, 0) - ecs, 0) 
+ (T, - I- CM ‘)/s] (29a) 

Case (b) 

wms, 0) -se,(S, o)+ T,,w,,-3trselt(~, 0) = 0. 

(29b) 

As e(s, 0) = A and 0,(s, 0) = -A Pr’l’ s’/’ we find 
the following values for A : 

Case (a) 

A = [3t,(T,-~-M*C)/S-M~C][~/(S”~-S,) 

- l/(s”2 -s2Ms, -4 

Tp = M2{C-4[(y-l)62~p”‘z’d~2(~)ds/lj where 
s,,~ = -3trspPr’/2/2f(9t~p2Pr/4-3tn)‘/2. 



Coupling of conduction and forced convection 1803 

Case (b) 

A = -T,JI/(s”~-s,)-~/(s”~-s~)] 

/[@I --s2Ws) “‘I 

where 

S ,.2 = -3/(2pPr”2)+(9/(4p2Pr)-3t,)“2. 

In both cases it is Re(s,.,) < 0. Since equation (28a) 
is not compatible with T\v’, # 0 the wall temperature 
in case (b) is discontinuous. 

4.3. Temperature and heat transfer at the interface 
The knowledge of the expressions of C and A 

enables one to calculate the temperature and the heat 
transfer at the interface. To better show the influence 
on T, and T,,, of the thickness b, we write the 
expressions of these functions together with those for 
the flat plate of zero thickness. Since T, = 1+ 
T,,,+ T,+ and T,., = T&, we have (see Erdelyi et 
al. [6]) in case (a) 

T,= T,+[(T,-1-M2C)(s*f,-s,f2) 

-M2C(s,f, -szf2w(~I -sd 

T, = Pr”2{M’C/(nt)“2+[3t,(T,-1 -h4’C)(f2-f,) 

+~*wf, -s:f2MsI -s2)) (30) 

where f; = exp (sft) erfc ( -sit’f2). Whereas for b = 0 

T, = T, ; T,,, = (M*C+ 1 - T,)(Pr/xt)“*. 

Analogously, in case (b) 

T,= l+CM’-T&Cf,-f,)/(s,-s2)Pr’f2 

T,w = T,+l,Js,f, -sJMs, -32) 

where I,,0 = 7$(O) is given by the energy equation in 
the integrated form (10). This equation shows that 

I 

I 
TdY N (T,-T,,/3) 

cl 

must be continuous. Therefore T,10 = 3M2C/p. For 
comparison, when b = 0 ; T, = 1 +cM*, T,,, = 0. 

4.4. Temperature profiles 
The temperature profiles are given by 

T(n,t)= l+Tp+T+ (31) 

where T, is given by equation (27a). In the various 
cases the expressions for T+ follow. 

Case (a) 

T+(q,t) = (T,-l-M2C)[erfc(cPr’/*) (32) 

+(s2Yl -s,g2Ms, -s2)1 

-cM%g, -sti2)i(si -s2) (32) 

where 

gi = e-C’Pr+(CPr”‘-y”‘)l erfc (~prl/2--,,l/2) ) 

and for b=O, T+(n,t) = (T,-1-CCM’)erfc(<Pr’f3. 

Case (b) 

T’(n, t) = 3CM2(g2-g,)/pPr’f’(s, -s2) (33) 

and for b = 0, T+ = 0. 

4.5. Analysis of the results 
The coupling of conduction in the solid and con- 

duction and convection in the fluid in the investigated 
problem introduces two new non-dimensional par- 
ameters trr = Ld/u,b’ and p = Re’12 b&,/&L (in 
addition to the Prandtl, Reynolds and Mach 
numbers). In order to analyze the role of these new 
parameters we list in Table 1 the expressions of the 
temperature and heat transfer at the wall for t + 0 
and t + co together with the corresponding ones for 
b = 0. In table 1 CI = (Pr/x)‘/*, /I = 1 + CM*- T,, 
6 = CW/3t,p(Pr z) ‘f2. 

In case (a) the wall temperature T, is continuous at 
t = 0 because the energy equation in the solid, in the 
form (9), requires the continuity of IA YT d Y N T,/3. 
Therefore the leading term for T,,, is the unperturbed 
one, in contrast with the case b = 0 where the dis- 
continuity of the temperature is imposed by the 
boundary conditions. The second term shows that T, 

Table 1. Wall temperature and heat flux behaviour for I + 0 and I + 03 

Case (a) 

f-t0 f--tW 

b#O b=O b#O b=O 

TW 1+6pf#Cat “’ 
T w M2C(a/f “2 - 3t,p Pr) 

r, 
pa/f ‘I2 

T,+f?pa/f”’ 
ba[I -(p2 Pr-(1 + M2C/~)/3f,)/2f]/t”’ 

T, 
pa/t If2 

Case (b) 

t-0 

b#O b=O 

t+w 

620 b=O 

TW 
T “W 

1 + M2C-6M’Cf’f’/p(Pr z)“’ 
3M*C( 1 - 6f ‘f ‘/p(Pr x) “‘)/p 

1+A!t*c 
0 

1 +M2C-3S/f”2 
36/2pr,t”2 

1+A!f2c 
0 
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Table 2. Physical ordinate for Pr = I 

t-0 1-m 

b#O b=O b#O b=O 

y  (case (a)) q + 2CW(2 I’*- 1)(1/7r)‘J2 q+2CkP(2r/n)“’ d7-,+8W2+ 3w)l(rr)“‘l rl[T, + wm) “‘I 
Y (case @)I tf+2ChP(2r/?r)” ~+2CM’(2r/n)“’ q{ 1+ CW[l - l/r,p(m)“‘]} q(l +Cw) 

increases as M’t,p Pr’l’C(Pr)t”‘, the heat transfer are displayed in Figs. 2-6; p and trs vary in the range 
T,,, is infinite at t = 0, its leading term depending on (0.01, I). In case (a) T, = 1.3. In Figs. 2 and 3 the 
M’ but not on the imposed temperature, as for b = 0. curves of T, for cases (a) and (b) are drawn. In Figs. 

The asymptotic behaviors of T, and T,,w are the 4 and 5 the temperature profiles are drawn in the 
same as for b = 0, the second order term of T, which physical plane for cases (a) and (b). In Fig. 6 the 
depends on p only whereas the one in T,,, depends velocity profiles for case (b) are drawn always in the 
also on 1,. 
In case (b), for t + 0 the temperature T, is dis- 
continuous at Of as in the case b = 0, whereas the 
heat transfer T,,* does not vanish. Both T, and T,,* 
vary linearly at the second order with the ratio @C/p. 

Once again the asymptotic behaviors for t + cc 
are the same as for the case b = 0. 

When Pr = 1 the temperature can be expressed in 
closed form (see equations 27(c), 31-33) as also the’ 
physical coordinate y  

s ‘I Y= T(q, t) dg = ~(1 + CM’) 
0 

-CM22t”*[~ erf’ 5+2 eUt2 erf c/k” 

- (2/n) ‘I2 erf ({2 ‘j2)] + T+ dq 

with 

s ‘I T+ drj 
cl 

given by 

Case (a) 

FIG. 2. Temperature at the wall, case (a) (---p = 1, 
“‘p = 0.01, I /I, = 1, II l& = 0.01). 

i 

rl 

T+ drl = 2t “*(T, - 1 - CM*)[{ erfc { 
0 

+(1-e-“)/x”2]+[(T,-1-CCM2)(szh,/sl-~lhZ/~2) 

-CW(h, -h*)]/(s, -s*) 

Case (b) 

s 

4 
T+ dq = -M2C(s2h, -slh2)/trrp(s, -s2) 

0 

where 

h. = {[-e-S2+cC-5,r”*)~ I erfc (l-sit”*)]6-erf<}. 

The expression of y  for t + 0 and t -+ co, in case (a) 
and (b) for Pr = 1 is reported in Table 2 (up to power 
t”* and t- I/*, respectively). 

Some results, related to M = 3, Pr = 1 and y  = 1.4, 

2.50 r 

FIG. 3. Temperature at the wall, case (b) (----p = 1, 
---p = 0.01, “‘p = 0.01, I I’$ = I, II I’, = 0.01). 
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FIG. 4. Temperature profiles, frr = 0.01, case (a) 
(...p = 0.01, ---p = 1, ---b = 0). 

physical plane. In case (a) the velocity profiles cor- 
responding to the same values of p and r, of case (b) 
fall on the curve p = 1 of Fig. 6. In Figs. 4-6 the 
profile corresponding to b = 0 is also reported. 

5. CONCLUDING REMARKS 

We have studied the thermofluid-dynamic field 
resulting from the coupling of laminar forced con- 
vection along and conduction inside a suddenly 
started flat plate, under two different thermal bound- 
ary conditions (cases (a) and (b) of Fig. 1). 

5.1. Wall Iemperature distribution 
This analysis, performed by finding accurate 

approximate solutions for the energy equations in the 
fluid. enabled us to evaluated the influence of the 

4 

Y 2 

0 
1 2 3 

T  

FIG. 5. Temperature profiles, fr, = 0.01, case (b) 
(...p = 0.01, ---p = 1,-----b = 0). 

6 

FIG. 6. Velocity profiles, fB = 0.01, case (b) (...p = 
--ep=l ,--- b=O,-M=O). 

0.01. 

coupling parameters, P and t,, on the field. Some 
results are reported in tables and diagrams for M = 3 
and Pr = 1, in case (a) Te = 1.3. We note that in 
case (a) the wall temperature T, grows either with 
increasing p at t, fixed or with increasing trr for fixed 
p. For t vanishing T, increases the more rapidly, the 
larger are the two parameters, whereas for t not too 
small T, can show a maximum, as shown in Fig. 2. 
In case (b), for p and tr, fixed, T, has an initial steep 
decrease, more pronounced when p is small, and 
shows a minimum. 

At tr, fixed T, increases as p increases ; at p fixed, 
with decreasing t,, the minimum decreases and moves 
towards larger values of r (Fig. 3). 

5.2. Temperature profiles 
Let us consider now the influence of p and t, on the 

temperature profiles; we assume t = 1. In case (a) 
(Fig. 4) the temperature profiles for large values of I(~ 
(> 102) and small values of p ( < lo- ‘) coincide with 
the one corresponding to b = 0 (for b + 0, p -+ 0, tls --+ 
co) which has a maximum at y equal to approximately 
1. 

With increasingp the temperature grows markedly, 
the point of maximum moves towards the wall and the 
asymptotic temperature is ‘reached’ at ever increasing 
values of y. 

For values of rrs decreasing below order one the 
temperature decreases and the profiles corresponding 
to different p tend towards a limit profile having a 
maximum greater than that of b = 0 (Fig. 4). 

In case (b), for trr << 1, the temperature increases 
strongly with p and the point of maximum moves 
towards the wall (Fig. 5). For trr of order one the 
temperature profiles do not change appreciably with 
respect to those for trr << 1, the temperature increases 
slightly only for p of order one. 

When trs >> 1, the temperature increases with 
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increasing p and the temperature profiles tend to the 
limit one corresponding to p + cc. 

5.3. Velocity profiles 
Let us now consider the influence of p and trr on the 

velocity profiles, again for t = 1. We remember that 
in the transformed plane the velocity profile does not 
depend on the temperature and II is always given by 
equation (25). In the physical plane the velocity profile 
is obtained by expressing 1 in terms of y. 

In case (a), 9 < y, JJ/~ increases with increasing p 
and the velocity profile tends to an upper limit profile 
for p + a) (for any trS). For t, > I the velocity profiles 
lie near to that corresponding to b = 0 for small values 
of p and lie near the limit one for high values of p, 
while for tr, << 1 the velocity profiles are all near the 
limit one. 

In case (b), q > y. For frS < 1 the velocity profiles 
for p >> 1 lie near to that for b = 0, while the velocity 
profiles for p << 1 lie near to a lower limit profile (for 
p + 0). For trS x 1 the velocity profiles tend to that 
corresponding to b = 0; those corresponding to 
smaller values of p become the nearest to it. 

5.4. Influence of.finite thickness 
Finally, we note that the presence of a finite thick- 

ness can influence the discontinuity of temperature 
and heat flux at the wall at t = 0. 

In case (a) the finiteness of the plate thickness leads 
to a continuous wall temperature at t = 0 since the 
temperature T, is no more imposed as q = 0 as for 

6 = 0. The heat flux goes to infinity for f  -+ 0 as f- “* 
but its leading term depends on A4 and Pr and not on 
T, as for b = 0. 

In case (b), in the presence of a finite thickness, the 
wall temperature is discontinuous as t = 0 as when 
b = 0, the heat flux is finite for t --t 0, while for b = 0 
it vanishes. It is interesting to note that in case (b) 
the solution that satisfies all the boundary conditions 
(19~(20) is defined by the arbitrary constant T,,,(O). 

In order to find the value of T,,,.(O) we have imposed 
the energy conservation inside the solid, expressed by 
the continuity, with respect to time at t = 0, of the 
integral in equation (IO). By employing this procedure 
we have obtained T,,,,(O) = 3CM2]p. 
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